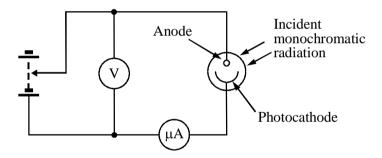

## **Photoelectric Effect Questions**

| 1. | (a) | The following equation describes the release of electrons from a metal surface illuminated by electromagnetic radiation. |     |
|----|-----|--------------------------------------------------------------------------------------------------------------------------|-----|
|    |     | $hf = k.e{\max} + \phi$                                                                                                  |     |
|    |     | Explain briefly what you understand by each of the terms in the equation.                                                |     |
|    |     | hf                                                                                                                       |     |
|    |     |                                                                                                                          |     |
|    |     | k.e. <sub>max</sub>                                                                                                      |     |
|    |     |                                                                                                                          |     |
|    |     | $\phi$                                                                                                                   |     |
|    |     |                                                                                                                          | (3) |
|    | (b) | Calculate the momentum $p$ of an electron travelling in a vacuum at 5% of the speed of light.                            |     |
|    |     |                                                                                                                          |     |
|    |     |                                                                                                                          |     |
|    |     |                                                                                                                          |     |
|    |     | <i>p</i> =                                                                                                               | (3) |

| What is the de Broglie wavelength of electrons travelling at this speed?             |            |
|--------------------------------------------------------------------------------------|------------|
|                                                                                      |            |
|                                                                                      |            |
|                                                                                      |            |
| $\lambda = \dots$                                                                    | (2)        |
| Why are electrons of this wavelength useful for studying the structure of molecules? |            |
|                                                                                      |            |
|                                                                                      |            |
| (Total 10 mark                                                                       | (2)<br>(s) |

2. The graph shows how the maximum kinetic energy T of photoelectrons emitted from the surface of sodium metal varies with the frequency f of the incident radiation.



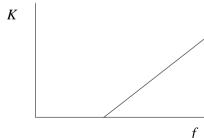

| Why are no photoelectrons emitted at frequencies below $4.4 \times 10^{14}$ Hz? |     |
|---------------------------------------------------------------------------------|-----|
|                                                                                 |     |
|                                                                                 | (1) |
| Calculate the work function Ø of sodium in eV.                                  |     |
|                                                                                 |     |
|                                                                                 |     |
|                                                                                 |     |
| Work function =                                                                 |     |

(3)

| Explain how the graph supports the photoelectric equation $hf = T + \emptyset$                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
| How could the graph be used to find a value for the Planck constant?                                                                                 |
|                                                                                                                                                      |
|                                                                                                                                                      |
| Add a line to the graph to show the maximum kinetic energy of the photoelectrons emitted from a metal which has a greater work function than sodium. |
| (Total 9 m                                                                                                                                           |
|                                                                                                                                                      |
| Experiments on the photoelectric effect show that                                                                                                    |
| • the kinetic energy of photoelectrons released depends upon the frequency of the incident light and not on its intensity,                           |
| • light below a certain threshold frequency cannot release photoelectrons.                                                                           |
| How do these conclusions support a particle theory but not a wave theory of light?                                                                   |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |

| Calculate the threshold wavelength for a metal surface which has a work function of 6.2 eV. |
|---------------------------------------------------------------------------------------------|
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
| Threshold wavelength =                                                                      |
| To which part of the electromagnetic spectrum does this wavelength belong?                  |
| (4)                                                                                         |
| (Total 10 marks)                                                                            |

**4.** The diagram shows monochromatic light falling on a photocell.

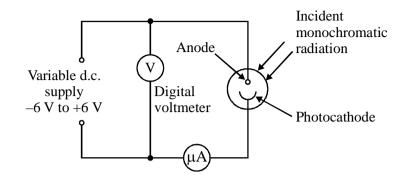



As the reverse potential difference between the anode and cathode is increased, the current measured by the microammeter decreases. When the potential difference reaches a value  $V_s$ , called the stopping potential, the current is zero.

| Explain these observations. |
|-----------------------------|
|                             |
|                             |
|                             |
|                             |
|                             |
|                             |

**(5)** 

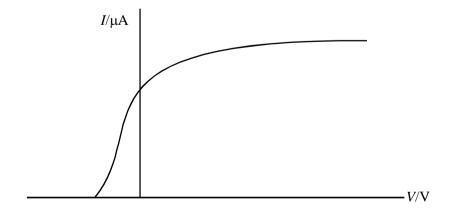
What would be the effect on the stopping potential of (i) increasing only the intensity of the incident radiation, ..... (ii) increasing only the frequency of the incident radiation? ..... **(2)** (Total 7 marks) Experiments on the photoelectric effect show that • the kinetic energy of photoelectrons released depends upon the frequency of the incident light and not on its intensity. • light below a certain threshold frequency cannot release photoelectrons. How do these conclusions support a particle theory but not a wave theory of light? You may be awarded a mark for the clarity of your answer. **(6)** The graph shows how the kinetic energy K of emitted photoelectrons from one metal varies with the frequency f of the incident light.




Add a second line to the graph showing how K will vary with f for a second metal which has a *smaller* work function.

(2) (Total 8 marks)

5.


**6.** The diagram shows monochromatic radiation falling on a photocell connected to a circuit.



The incident radiation has a wavelength of 215 mm. The metal surface of the photocathode has a work function of 2.26eV.

| Calculate the energy in eV of a photon of the incident radiation.  |     |
|--------------------------------------------------------------------|-----|
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
|                                                                    |     |
| Energy = eV                                                        | (4) |
| What is the maximum kinetic energy in eV of the emitted electrons? |     |
| Maximum k.e. = eV                                                  |     |
| Write down the value of the stopping potential.                    |     |
| Stopping potential =                                               |     |

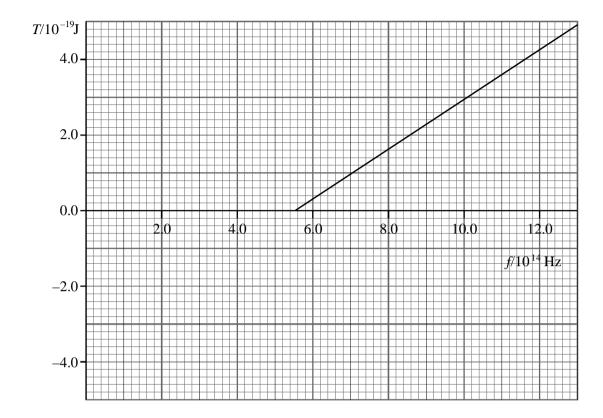
If the wavelength and intensity of the incident radiation is kept constant, a graph of the current I through the photocell against applied p.d. V is as shown.



**(2)** 

Mark a letter S on the graph to show the stopping potential.

The photocathode is replaced with one whose metal surface has a greater work function. On the graph above, sketch how I would vary with V given that the wavelength and intensity of the incident radiation remain unchanged.


(3) (Total 9 marks)

7. The photoelectric effect supports a particle theory of light but not a wave theory of light.

Below are two features of the photoelectric effect. For each feature explain why it supports the particle theory and not the wave theory.

| (a) | Feature 1: The emission of photoelectrons from a metal surface can take place instantaneously.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|     | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)         |
| (b) | Feature 2: Incident light with a frequency below a certain threshold frequency cannot release electrons from a metal surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
|     | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|     | (Total 4 magnetic states of the state of the | (2)<br>arks |

8. The graph shows how the maximum kinetic energy T of photoelectrons emitted from the surface of sodium metal varies with the frequency f of the incident electromagnetic radiation.



| Use the graph to find a value for the Planck constant.          |     |
|-----------------------------------------------------------------|-----|
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
| Planck constant =                                               | (3) |
|                                                                 | ` / |
| Use the graph to find the work function $\phi$ of sodium metal. |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |

Work function = .....

**(2)** 

| Calculate the stopping potential when the frequency of the incident radiation is $9.0 \times 10^{14}$ Hz. |
|-----------------------------------------------------------------------------------------------------------|
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
| Stopping potential =                                                                                      |
| (3)                                                                                                       |
| (Total 8 marks)                                                                                           |